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ABSTRACT

The results of a highly vectorized and multitasked model of the

world ocean circulation jrhe' --beerr analyzed. This model$If6T --

realistic physics, geometry, and forcing on a high-resolution grid '

The model <as run on the NCAR Cray X-MP/48 using a robust-diagnostic

strategy. Twenty years of model integration using one-half degree

horizontal resolution and 20 levels of vertical resolution were

accomplished after 200 wall-clock hours at a maximum FORTRAN

performance speed of 450 megaflops. Seven key regions of the world

ocean were analyzed using an ocean model processor. A representation

of the global ocean circulation emerged that compared well with

observations and that included strong advective features, fronts. and

subtropical meanders. A diagnostic analysis program was developed to

analyze meridional heat and volume transports. The results in all

basins appear to be reasonable when compared to the results of other

studies. For example, an anomalous northward heat transport of 3.8 x

1014) W at 30--S in the South Atlantic compares favorably with the

estimate of 4.2 x 0...W at 327S by Bennett (1978) using hydrographic

data. The results of t: simulations conducted in this study can be

compared and contrasted against the results of future eddy-resolving

simulations. ¢! f ,' I T " "' " " " '" q "-"f- w F '
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I. INRDUTO

For as long as man has plied the seas he has sought to understand

the behavior of the ocean as it affects his vessel. The effects of

wind-generated waves and circulations have been of concern to every

sailor and every mission. With the advent of submarine warfare in the

twentieth century, man's interest in the ocean extended to beneath the

surface and to synoptic-scale oceanic phenomena such as fronts and

eddies. Since World War II, the effects of increased urbanization on

global climate have also necessitated a better understanding of the

ocean's ability to buffer large-scale climate changes.

While man has long known the geophysical fluid dynamic equations

that govern world ocean circulation, he has historically suffered from

a lack of observational data and analytical techniques for solving

these nonlinear equations. The development of numerical solution

techniques and computer technology after World War II brought

numerical solutions within reach of meteorologists, but not physical

oceanographers. Physical considerations require that oceanic model

resolution be ten times as great in each horizontal coordinate and

that time integrations be tenfold as long as those in atmospheric

modeling. As a result, physical oceanographers of the 1960's and

1970's were constrained to limited-domain, coarse grid, or filtered

model ocean simulations. Only recently, in the mid-1980's. has the

problem facing physical oceanographers become tractable through recent



advances in observational techniques, both in-situ and remote

(especially satellite), and in supercomputer technology.

Dr. Albert J. Semtner, Jr. of the Naval Postgraduate School (NPS)

and Dr. Robert M. Chervin of the National Center for Atmospheric

Research (NCAR) have developed a high-resolution world ocean

circulation model capable of numerically solving the primitive

equations using the maximum capacity of computer power currently

available or likely to be available in the next several years. This

model has already achieved a horizontal resolution of one-half degree

and a vertical resolution of 20 levels over the world ocean using a

robust-diagnostic methodology and NCAR's Cray X-MP/48 supercomputer.

This time integration has produced a very realistic representation of

global ocean circulation that includes strong advective features as

well as fronts and meanders. The authors of this model believe that a

horizontal resolution of one-third degree with 15 vertical levels is

possible on the Cray X-MP/48, and that a horizontal resolution of

one-fourth degree with 25 vertical levels may be possible on the Cray

X-MP/416. These simulations would be fully eddy-resolving. Such

impressive statistics are achieved using a computer code that is fully

vectorized and that is designed for "multitasking" on multiple

processors--something no other world ocean model currently can boast.

This paper reports the results of an analysis performed on the

robust-diagnostic model integrations of Semtner and Chervin through

February, 1988. The fields of potential temperature, horizontal

velocity components, and horizontal volume transport are analyzed

using the ocean model processor of Bettge (1987). This processor also

2
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permitted the analysis of streamlines, velocity vectors, and potential

temperature difference fields resulting from the one degree horizontal

resolution model integrations. In addition, the author has developed

a diagnostic program for analyzing meridional heat transports and

meridional volume transports resulting from the various model

integrations. The goal of all analysis discussed in this paper is the

validation of the world ocean model of Semtner and Chervin as a

viable tool for understanding world ocean circulation. Such a tool

should ultimately permit the assessment of oceanic influences on

climate and the forecasting of oceanic phenomena for military and

civilian use.

Chapter II of this paper discusses the basic methodology used in

this study; including descriptions of the world ocean model, the ocean

model processor, and the diagnostic analysis program. Specific

experimental conditions are also discussed in Chapter II. In Chapter

III, the results of these specific experiments are reported and

discussed as they compare to observations and to the results of other

studies. Finally, in Chapter IV, the findings of this study are

summarized and a track is charted for the future testing and

application of the world ocean model.

3



A. MODEL DESCRIPTION

I. World Ocean Model

The numerical model used in this analysis is a multi-level

primitive equation, world ocean, general circulation model. It is

essentially an update of the model of Semtner (1974). The finite-

difference formulation of the world ocean model is described in

Semtner (1986b). The historical development of such models and the

rationale behind many of the numerical choices of this model are

described in Semtner (1986a).

a. Model Equations

The governing equations in spherical coordinates are

presented in Semtner (1986b). Seven variables specify the physical

condition of the ocean: the x-, y-, and z- components of velocity (u,

v, and w, respectively), potential temperature T, salinity S, pressure

p, and density p. The horizontal volume transport stream function oxy

is a derived quantity that is also used to compute the barotropic

component of the horizontal velocity. The ocean is assumed to be an

incompressible fluid that is horizontally isotropic. Several standard

approximations are used to simplify the governing equations: the

thin-shell approximation, the hydrostatic approximation, and the

Boussinesq approximation. Also, the Coriolis term involving w in the

u momentum equation is neglected to maintain energetic consistency

with the hydrostatic relation.

4



Eddy effects in the horizontal are parameterized using

eddy viscosity and eddy diffusivity coefficients. Specific values of

these coefficients are dependent on the horizontal resolution and are

given in Chapter II. B. in the discussion of specific experimental

conditions. Options for isopycnal mixing (in coarse-grid

calculations) or biharmonic mixing (in eddy-resolving calculations)

are incorporated into the model, after Cox (1984). Vertical mixing in

the model is based upon the Richardson-number dependent

parameterization of Pacanowski and Philander (1981).

A large-scale hydrostatic model such as this cannot handle

convective processes explicitly. Therefore, a simple convective

adjustment is applied in order to treat situations of static

instability.

b. Domain and Boundary Conditions

The model domain includes all longitudes, and latitudes

from 75*S to 65*N (Figure 2.1). East and west boundaries are

cyclically continuous. North and south boundaries are closed. This

northern restriction thus neglects the exchange of waters between the

North Atlantic Ocean and the Arctic Ocean, as well as flow through the

Bering Strait. Asia, Europe, North America, and South America are

considered to comprise one interconnected, primary continent.

Antarctica, Australia, and New Zealand are treated as islands. All

other actual islands have been either submerged to 100 m depth or else

connected to the nearest land mass. Also, a number of inland seas and

shallow bays have been filled. At lateral walls, a no-slip condition

(u-v-0) is imposed, and no flux of heat or salt is allowed.

5
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Figure 2.1 Model domain.
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Bottom topography has been interpolated to the model grid

and is accommodated in the model by using a variable number of

gridboxes in the vertical, stacked downward from the surface until the

bottom is reached (Figure 2.2). At the ocean bottom, fluxes of heat

and salt are assumed to be zero. Flow is required to parallel the

bottom slope. Bottom friction is neglected.

At the ocean surface, momentum transfer is based upon the

annual mean observed wind stresses of Hellerman and Rosenstein (1983)

(Figure 2.3). Adopting the robust-diagnostic strategy of Sarmiento

and Bryan (1982), modeled potential temperature and salinity are

linearly damped to the climatological values of Levitus (1982), with a

short damping time constant used at the surface and a longer damping

time constant used in the ocean interior. A rigid lid approximation

(w-O) is made at the ocean surface in order to permit a longer model

time step and to filter out high frequency external gravity waves.

The rigid lid condition also complicates the solution of the governing

equations by creating an elliptic problem to be solved at every time

step for the volume transport stream function. This problem is solved

by using a successive over-relaxation procedure.

c. Resolution

Model resolution in the horizontal and in the vertical is

variable within the limitations of the supercomputer employed.

Uniform grid spacing in both latitude and longitude is used regardless

of the horizontal resolution chosen. Vertical resolution should be

adequate to resolve the vertical structure of known oceanic phenomenia

and to resolve the bottom topography. A stretched grid is employed to

7



Figure 2.2 Bottom topography interpolated to the model
grid. Bottom depth is contoured in units of
km.
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Figure 2.3 Mean annual wind stresses of Hellerman and

Rosenstein (1983) interpolated to the model
grid in units of 0.1 dyn cm-2 in the (a) x and
(b) y directions.



allow better resolution of upper-ocean processes regardless of the

number of vertical levels chosen. Specific experimental resolutions

are discussed in Chapter II. B.

d. Finite Differencing Schemes

For the most part, the energetically consistent, space-

staggered B-scheme of Bryan (1969) is used for horizontal space

differencing. For advective processes, this spatial differencing

scheme conserves water mass, heat, salt. variance of potential

temperature, variance of salinity, angular momentum, and kinetic

energy as well as total energy. It does not conserve linear momentum

or enstrophy (mean square vorticity). Experience has shown that the

conservation of linear momentum at lateral boundaries is not critical

in highly geostrophic systems such as the world ocean. The

conservation of enstrophy, however, may become important in high

resolution experiments in order to prevent the false computational

cascade of energy to high wave numbers. With regard to the vertically

averaged flow, the methods of Takano (1974) for semi-implicit

treatment of the beta term and for hole relaxation of islands are

generalized to the case of variable bottom topography. The pressure

term can also treated semi-implicitly for the baroclinic mode.

The model uses a leapfrog time step for advective

processes and a forwari time step for diffusive processes within a

basic leapfrog time differencing structure. Such a time differencing

scheme is simple ind provides second-order accuracv. An occasional

forward time step is inserted within the basic leapfrog structure in

order to suppress computational mode noise. Stability considerarions
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dictate that the length of each time step vary with the horizontal

resolution chosen. Shorter time steps are needed in higher resolution

experiments.

e. Computational Efficiency

The model was designed for Cray X-MP class and other

anticipated supercomputers with fast vector startup times. It is 98%

vectorized in longitude across individual ocean basins and 99.6%

parallel processed in latitude for four to 64 processors.

Computational efficiency is also enhanced by taking a longer time step

for the more slowly adjusting fields of potential temperature and

salinity, and by not computing through land masses. Using the four

processors and eight megaword main memory of a Cray X-MP/48 a maximum

FORTRAN performance speed of 450 megaflops has been achieved.

2. Ocean Model Processor

The ocean model processor of Bettge (1987) was used as a tool

to analyze data output from time integrations of the world ocean

model. This processor was designed to execute within the National

Center for Atmospheric Research (NCAR) Scientific Computing Division

environment on Cray supercomputers using data sets that reside on the

mass storage system.

The primary product from the ocean model processor is a two-

dimensional contour analysis of data that was originally represented

in the four dimensions of space and time. Data can be averaged over

any dimension and plotted within any two-dimensional cross-section

subset. For the purposes of this study, spatial cross-sections of T.

u, v, and ikxy were analyzed at the time iterations of interest by

11k



focusing on selected individual values of the excluded spatial

dimension. Subsequent improvements to the ocean model processor by

Bettge also permitted analysis of spatial cross-sections of

streamlines, velocity vectors, and difference fields. As an example

of the utility of graphic representation of difference fields, this

feature facilitated the comparison of the potential temperature field

at any time iteration to the climatological field of Levitus (1982).

The specific regions of the world ocean analyzed using the

ocean model processor were:

- The Gulf Stream region.

- The Kuroshio Current region.

- The Drake Passage region.

- The East Australian Current region.

- The Agulhas Current region.

- The western Australia region.

- The equatorial Pacific region.

These regions were chosen first as key regions that would permit

validation of the world ocean model, and second as regions of

significant operaLional and research interest. The ocean model

processor permitted graphic enlargement of these regions and the

various contoured fields from the ocean model as desired. These

contour plots were then compared to observed fields in an attempt to

validate the world ocean model as a viable general circulation model.

3. Diagnostic Analysis Program

A diagnostic analysis program based upon the formulations of

Bryan and Lewis (1979) was developed in order to assess the meridional

12



heat and volume transports of the world ocean and the individual ocean

basins. Bryan (1982) combines the Indian and Pacific ocean basins

because of work by Godfrey and Golding (1981) that suggests

significant flow of surface waters from the Pacific Ocean into the

Indian Ocean between Australia and southeast Asia. A similar approach

is adopted in this study.

a. Meridional Heat Transport Formulation

In order to gain insight into the mechanisms of meridional

heat transport in the ocean model, it is necessary to divide the total

heat transport into three components. Defining [( )J as the zonal

average of ( ), i.e.

[( ] -.,1- X ( )
A

and defining ( )' as the departure of ( ) from the zonal average,

the total meridional heat transport across a given latitude may be

written as

HT - pcp Z ([T]fv] + [T'v'] - AH [u) (6xcos) (6z).

0 G D

O is the overturning component and can be attributed to ocean

circulation in the meridional plane associated with wind-driven Ekman

cells and with thermohaline circulations. G is the gyre component and

can be attributed to flow in the horizontal plane associated with the

major mid-latitude gyres. D is the diffusive component and is a

parameterization of heat transport by synoptic scale eddies, which are

represented only implicitly in the ocean model. The specific heat of

water is cp, AH is the horizontal eddy diffusivitV coefficient. 6T is

the north-south potential temperature gradient, 6y is the north-south

13
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grid spacing, 6x is the east-west grid spacing at the equator, and 6z

is the (variable) thickness of a vertical grid box. Longitude is

represented by A, and latitude is represented by k.

The meridional heat transport calculation was performed

throughout the world ocean model's range of latitude at selected time

iterations of interest for the global ocean. In order to maintain the

condition of non-divergence during the zonal integrations for the

Indian-Pacific and Atlantic ocean basins, basin heat transport

calculations were performed north of 30S only, where the basins are

physically isolated from each other by Africa and South America.

Next, the total heat transport results from the individual basins were

summed and compared to the global ocean total heat transports (north

of 300S) in order to ensure consistency. Finally, the heat transport

curves from all basins were compared to other results obtained using

direct, indirect, residual, and numerical ocean model methods in an

attempt to validate the world ocean model as a viable tool for

studying ocean influences on climate.

b. Meridional Volume Transport Formulation

In order to better understand ocean ciit~ulation in the

meridional plane, it is profitable to compute the zonally integrated

volume transport stream function. At a given latitude and depth,

zonal integration results in
z

Oyz (0,z) - X (F) (2w a cosO) [v] (6z).
0

In this expression, a is the radius of the earth at the equator,

(21r a coso) represents the circumference of the earth at a given

latitude 0, and F is the fraction of grid boxes at a given latitude

14
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and depth that represent ocean (vice land). The zonally integrated

circulation at a given depth z is arrived at by summing from the

surface (where the volume transport is, by definition, equal to zero)

down to depth z. Values at the ocean bottom were verified to be near

zero.

The meridional volume transport calculation was performed

throughout the world ocean model's range of latitude at selected time

iterations of interest for the global ocean. The Indian-Pacific and

Atlantic ocean basin calculations are performed north of 30*S only, in

keeping with the reasoning already discussed for the meridional heat

transport calculations. All stream function results were then

subjected to a nine-point smoothing in order to reduce the effects of

computational noise. Next, the results from the individual ocean

basins were summed and compared to the global ocean results (north of

300S) in order to ensure consistency. Finally, the contour plots for

the global, Indian-Pacific, and Atlantic ocean basins were compared to

observed meridional circulations and to the results of other numerical

studies in an attempt to validate the world ocean model as a viable

simulator of thermohaline and wind-driven circulations in the

meridional plane.

B. SPECIFIC EXPERIMENTAL CONDITIONS

i1. Robust-Diagnostic Strategy

At time zero, the world ocean is assumed to be at rest, stably

stratified, and with horizontally uniform profiles of potential

temperature and salinity. Near the beginning of the experimentation.

a decision was made to forego fully prognostic modeling until such

15



time as greater computer power is available than with the Cray X-

MP/48. The robust-diagnostic strategy adopted from Sarmiento and

Bryan (1982) consists of linear restoring to the annual mean potential

temperature and salinity values of Levitus (1982). At the surface, a

restoring time constaiLt of one month was used throughout the

experimentation. In the interior of the ocean, the restoring time

constant was progressively increased from experiment to experiment.

Baseline integrations at each of the resolutions tested were continued

until the diagnostic adjustment times of potential temperature and

salinity were within two percent of full equilibrium, and until the

rates of increase of baroclinic and barotropic mode energies became

less than one percent of the work done by the wind stress. The

sequence of experiments described below is summarized in Table 1. It

is important that the reader observes the desired progress of this

(and future) experimentation toward greater resolution, longer model

integration time, and more fully prognostic modeling--within the

limits of available supercomputer technology.

2. One Degree. Twenty Level ExDeriments

a. Baseline (Laplacing Mixing) Integration

In this experiment the world ocean model was integrated

for four years using one degree horizontal resolution, 20 levels of

vertical resolution, and Laplacian mixing. At this time an

equilibrium was reached. Each wall-clock hour of computer time on the

Cray X-MP/48 accomplished eight-tenths of a year of model integration

time. The horizontal eddy viscosity and eddy diffusivity coefficients

used were identically 2.0 x 107 cm2 s - 1 In the interior of the

16
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ocean, the model employed a one year restoring time constant. Results

from this experiment are presented and discussed in Chapter III. A.I.

b. Isopycnal Mixing Integration

In this experiment, isopycnal mixing replaced Laplacian

mixing after 2.8 years of integration of the world ocean model. Model

integration was then continued out to four years total integration

time. All other aspects of this experiment were identical to the

baseline (Laplacian mixing) integration. Results from this experiment

are presented and discussed in Chapter III. A.2.

3. One-Half Degree. Twenty Level Exneriments

a. Baseline (Three Year Interior Restoring) Integration

In this experiment, the world ocean model was integrated

for ten years (one decade) using one-half degree horizontal resolution

and 20 levels of vertical resolution. The restoring time constant in

the interior of the ocean was relaxed from one year to three years

after four years of the model integration. An equilibrium was reached

after four years of integration time and then again prior to reaching

the decadal mark. Each wall-clock hour of computer time on the Cray

X-MP/48 accomplished one-tenth of a year of model integration time.

Ten years of model integration thus consumed 100 wall-clock hours or

400 processor hours. The horizontal eddy viscosity and eddy

diffusivity coefficients used were identically 1.0 x 107 cm2 s-1

Laplacian mixing was used throughout the model integration. Results

from this experiment are presented and discussed in Chapter III. B.I.

18



b. Free Thermocline Integration

This experiment was essentially a continuation of the

baseline (three year interior restoring) integration out to 20 years

total integration time, but without robust-diagnostic forcing between

25 m and 710 m depths. The waters above the main thermocline were

thus allowed to evolve prognostically within the constraints of the

surface and deep forcing. All other aspects of this experiment were

identical to the baseline (three year interior restoring) integration.

Results from this experiment are presented and discussed in Chapter

III. B.2.

1I
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III. RESULTS AND DISCUSSION

In this chapter, the most significant results of the various model

integration experiments are presented and discussed. Illustrative

figures and tables are consolidated at the end of this chapter.

Meridional heat transport and meridional volume transport plots for

all experiments and all ocean basins are contained in the Appendix.

Concerning the output of the ocean model processor, the reader is

advised that the appearance of a second, outer coastal outline

signifies the ocean-land boundary at the specified depth. In the

plots of meridional heat transport, positive values indicate northward

heat transport and negative values indicate southward heat transport.

In the contour plots of meridional volume transport, positive values

indicate clockwise circulation and negative values indicate

counterclockwise circulation. The general strategy of the author in

the following discussion is to compare the one degree baseline

integration results to climatology, to compare the one degree

isopycnal mixing and the one-half degree baseline integration results

to those of the one degree baseline integration, and to compare the

one-half degree free thermocline integration results to those of the

one-half degree baseline integration. Comparisons made between world

ocean model results and observations are to the values and

descriptions cited in Pickard and Emery (1982), except where otherwise

stated. In all such comparisons the model of Semtner and Chervin is

simply referred to as "the world ocean model."

20
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A. ONE DEGREE, TWENTY LEVEL EXPERIMENTS

1. Baseline (Laplacian Mixing) Integration

A global overview of the world ocean model results after four

years of integration is encouraging. The model currently depicts the

Gulf Stream and the Kuroshio Extension as regions of tight isotherm

packing (Figure 3.1). The volume transport field illustrates the

expected dominance of the Antarctic Circumpolar Current and the major

midlatitude and subarctic gyres (Figure 3.2). The flow in these gyres

is vividly apparent by looking at a global plot of streamlines at

62.5 m depth (Figure 3.3). Nearer the surface, the streamline flow

reveals an excellent simulation of Ekman convergerices near 30°S and

300 N, and divergence near the equator (Figure 3.4) -- in keeping with

the climatological wind pattern.

In the Gulf Stream region, the potential temperature field

reveals the expected advection of isotherms off Cape Hatteras,

corresponding to the location where the Gulf Stream leaves the coast

(Figure 3.5). The model does not, however, clearly define the north

wall of the Gulf Stream. A proper representation of the Gulf Stream

probably requires mass exchange between the North Atlantic Ocean and

the Arctic Ocean (W. Schmitz, personal communication). (In the case

of the world ocean model, this mass exchanged can be accomplished by

"transplanting" the Arctic Ocean grid into the unused data arrays of

the primary continent, and then by coupling the Arctic grid to the

North Atlantic at 65"N.) Meanwhile, increased horizontal resolution

will result in some improvement in the model's Gulf Stream simulation.

Plots of fixed-length current vectors with superimposed speed
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contours (Figure 3.6) and volume transport (Figure 3.7) show a Gulf

Stream that is somewhat weaker than expected, with a maximum speed of

73 cm s-" and a maximum volume transport of 67 Sv (where I Sv = 1012

cm3 s-1) off Cape Hatteras. Again, a proper simulation of the Gulf

Stream awaits inclusion of mass exchange between the North Atlantic

and Arctic Oceans. The eddy-like features in the southwestern

Sargasso Sea in Figure 3.7 are in fact computational noise that will

be eliminated in higher resolution experiments. Streamline plots of

the Gulf Stream region display the generally eastward flow of the Gulf

Stream near the surface (Figure 3.8) and the generally westward flow

of a very wide undercurrent below about 1500 m depth (Figure 3.9).

Results for the Kuroshio Current region are shown in Figures

3.10 (potential temperature), Figure 3.11 (current vectors), Figure

3.12 (volume transport), Figure 3.13 (streamlines near the surface),

and Figure 3.14 (streamlines at about 1500 m depth). The potential

temperature field shows the expected advection of isotherms as the

Kuroshio Current leaves the Japanese coast at about 30°N latitude. A

maximum current speed of 87 cm s- I and a maximum volume transport of

91 Sv south of Japan are comparable with observed values. The

streamline plots faithfully reproduce the Kuroshio Extension at the

surface, but do not show a well-defined undercurrent.

In the Drake Passage, the model reveals a net volume transport

for the Antarctic Circumpolar Current (ACC) of up to 180 Sv (Figure

3.15). Year-long current meter records have provided an average value

of 139 Sv. Current speed is generally less than 20 cm s - 1 , although

higher values are apparent over small areas (Figure 3.16). The
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complexity of the flow in this region can be attributed to very

complex bottom topography as well as to computational noise (which

will be reduced in higher resolution experiments). Thus, the world

ocean model correctly reproduces an ACC of very large volume transport

but relatively low current speed. The potential temperature field in

this region also reveals a frontal region at 40 *S off the South

American east coast, where the Falkland and Brazil Currents meet

(Figure 3.17).

In the region of the East Australian Current (EAC). the

potential temperature field reveals advection of isotherms

corresponding to southward flowing western boundary currents off

Australia and New Zealand (Figure 3.18). Plots of the y- and x-

components of velocity reveal a western boundary current that flows

south along Australia at up to 40 cm s-l, turns east at approximately

33*S with a speed of less than 10 cm s-1, and then turns southward

again along the northeast coast of New Zealand with speeds of up to 15

cm s"I (Figure 3.19). The anticyclonic loop made by the EAC as it

leaves the Australian coast is well depicted in the plot of volume

transport, where the EAC is shown to penetrate southward to almost

400 S before turning to the northeast (Figure 3.20). The eddy-like

features that appear to emanate from this anticyclonic loop are

computational noise that will disappear in higher resolution

experiments. Similar eddy-like featurrs appear to the east of New

Zealand. A maximum volume transport of 56 Sv off the Australian coast

is consistent with an estimate cited by Kamenkovich et al. (1986).

However, the fields of current speed and volume transport in the EAC
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region have been observed to be very variable. A streamline plot at

62.5 m depth is representative in showing how the EAC turns eastward

into the Tasman Sea and how the ACC remains predominantly to the south

of Australia and New Zealand (Figure 3.21).

Model results for the Agulhas Current region are interesting

on many accounts. First, the potential temperature field (Figure

3.22) reveals upwelling off the west coast of Africa. Second. a

tightening of isotherms along 40*S corresponds to a frontal region

between the Agulhas Return Current and the ACC. Third, a tongue of

warm water spreading westward around the southern tip of Africa

suggests at least partial flow of the Agulhas Current around Africa

and into the South Atlantic Ocean. The u velocity contour plot near

the surface confirms this suspicion by revealing large westward speeds

(associated with the Agulhas Current) propelling warm Indian Ocean

water around the southern tip of Africa (Figure 3.23). This plot also

reveals a cyclonic circulation in the Indian Ocean just south of the

equator -- indicating that the Southwest Monsoon dominates the wind-

driven circulation on an annual mean basis. The v velocity contour

plot near the surface shows the dominance of the northward-flowing

Somali Current (121 cm s"l maximum) and the southward-flowing Agulhas

Current (66 cm s-1 maximum) (Figure 3.24). The volume transport plot

reveals a maximum Agulhas Current transport of 84 Sv (Figure 3.25).

These numbers suggest a stronger Agulhas Current than is commonly

thought. The Agulhas Retroflection (where the Agulhas Current is

turned anticyclonically to the east by the ACC) is very well depicted

iti a near-surface streamline plot (Figure 3.26).
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In the western Australia region, a volume transport of up to

20 Sv is calculated to flow southwestward between Indonesia and

Australia (Figure 3.27). This value is of the same order of magnitude

as the estimates of Godfrey and Golding (1981). Godfrey and Golding

(1981) also suggest that geostrophic balance of this transport

requires a bank of warm water on its left (southern) side. Such a

balance would result in the observed suppression of upwelling along

the western coast of Australia. Model results confirm this theorv

with a downward bending of isotherms toward the coast (Figure 3.28),

weak (4 cm s-1) on-shore flow in the upper layers (Figure 3.29), and

weak (2 cm s-1) southward flow along the coast (Figure 3.30) at 300S.

This warm southward flow along the western coast of Australia is also

relatively fresh, suggesting that the seasonal Leeuwin Current

dominates the flow on an annual mean basis (Figure 3.31). Beneath

this southward flow, at 300 m depth in Figure 3.30, we can also see

the beginnings of a northward flowing undercurrent. The "busyness" in

the northeast corner of the volume transport plot (Figure 3.27) is

computational noise.

The equatorial Pacific is perhaps the best region of all for

validating the world ocean model circulations. The complicated

system of eastward- and westward- flowing currents, which have been

well observed, were well simulated by the world ocean model of Semtner

and Chervin. A cut of the entire Pacific Ocean along the

international dateline reveals midlatitude frontal regions between

near-surface equatorial and subarctic waters, as well as the bending

upward of isotherms near the equator in association with Ekman

25
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divergence (Figure 3.32). A potential temperature contour plot along

the equatorial plane reveals a very prominent upward sloping of the

14"C and warmer isotherms from the Western Pacific to the Eastern

Pacific (Figure 3.33). This feature supports observations of a deep

thermocline in the Western Pacific and a shallow thermocline in the

Eastern Pacific during non- El Nino years. Concerning the zonal

velocity field, a meridional enlargement of the equatorial region at

the dateline (Figure 3.34) reveals, from south to north:

- A very weak eastward-flowing South Equatorial Countercurrent at
the surface at 9 - 11oS.

A strong (36 cm s-1) westward-flowing South Equatorial Current
from 80S to 40N and extending to almost 300 m depth near 50S.

- A very strong (54 cm s - 1) eastward-flowing Equatorial
Undercurrent (EUC) with a core at about 160 m depth under the
equator.

A moderate eastward-flowing North Equatorial Countercurrent from

4 - 90N and extending to perhaps 200 m depth.

- A weak westward-flowing North Equatorial Current from 9 - 170 N and
extending to 300 m depth.

A u velocity contour plot along the equatorial plane also reveals that

the EUC tilts upward to the east and reaches a maximum eastward speed

of 94 cm s-1 at about 115 m depth and a lougitude of 143 0 W (Figure

3.35). All of the model-produced current speeds for the equatorial

Pacific region are certainly reasonable given annual mean forcing.

The Levitus (1982) data are based upon averages on one-degree

squares of all available hydrographic data, where obviously erroneous

data have been removed. The final data set is a smoothed analysis of

these one-degree square averages. While filling in holes in the

original data and generally increasing the reliability of the data
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set, this smoothing process also causes a loss of information--

particularly near boundaries, where gradients in water mass properties

are most pronounced The effective horizontal resolution of the

Levitus (1982) data set thus turns out to be about three degrees in

latitude and longitude (Sarmiento and Bryan, 1982). Even with this

smoothing, however, it has been shown that the world ocean model

faithfully simulated most of the significant features of world ocean

circulation. A global overview of potential temperature difference

(D-T) between world ocean model results and annual mean Levitus data

shows significant differences in potential temperature along the

western boundary currents (Figure 3.36). Thus, the world ocean model

may be considered truly robust in that its solution is resistant to

minor inconsistencies in the input data (Sarmiento and Bryan, 1982).

World ocean model results for the meridional transport of heat

are presented in Figures 3.37, 3.39, and 3.40 for the global, Indian-

Pacific, and Atlantic ocean basins, respectively. Curve D represents

the total meridional heat transport; curves A, B, and C represent the

overturning, gyre, and diffusive components, respectively.

For the global ocean basin (Figure 3.37), we at once notice

that the total heat transport is poleward in each hemisphere. This

pattern appears to be well supported by the results of other studies

(Table 2), although there is quite a bit of variation in the total

heat transport magnitudes. In this table, results from studies

employing four different methods are compared. The indirect method of

Hastenrath (1982) and Hsiung (1985) uses surface oceanic heat fluxes

based on many years of ship observations. By assuming no net oceanic
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heat storage over an annual cycle, the net annual oceanic heat

transport is computed. Miller et al. (1983) use essentially the same

method but instead derive the zurface heat flux data from an

atmospheric general circulation model. The indirect method tends to

suffer from systematic errors in the surface heat flux balance

calculations, which are particularly troublesome in the tropics where

heat flux into/out of the ocean is but a small difference between net

radiative heating and cooling by evaporation (Bryan, 1982). The

residual method uses satellite measurements of net radiation at the

top of the planet earth and subtracts climatological atmospheric heat

transport to compute oceanic heat transport as a residual. The major

source of error for this method is believed to be systematic biases

in the satellite data of about 5 W m-2 (Bryan, 1982). The direct

method uses hydrographic data across an east-west vertical section to

estimate heat transport across a given latitude. Unfortunately, in

gJsiLu measurements are costly and have thus far provided only limited

heat transport information for single, synoptic sections at a few

latitudes (Bryan, 1982). Finally, the numerical method uses numerical

methods to model ocean circulation and then diagnostically determine

heat transports. Until recently, however, computer resource

limitations have permitted only coarse-grid model calculations such as

those of Bryan and Lewis (1979) (approximately 2.50 horizontal

resolution) and Meehl et &1. (1982) (5.00 horizontal resolution). The

world ocean model of Semtner and Chervin has facilitated the first

fine-grid numerical computation of meridional heat transports on a

global ocean basis.
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An examination of the individual components of the total

meridional heat transport for the global ocean is revealing. In

Figure 3.37 we can see that the overturning component (curve A)

follows the Ekman transport in the tropics and in the southern

midlatitudes. It can also be seen that the total meridional heat

transport is dominated by the overturning component at low latitudes.

The gyre component (curve B) is associated with horizontal gyres and

becomes most significant to the total meridional heat transport in the

middle latitudes, where east-west temperature differences are great.

The diffusive component (curve C) becomes significant to the total

meridional heat transport also in the midlatitudes, where large north-

south temperature gradients develop between equatorial and

subarctic/subantarctic waters. These results are generally consistent

with those resulting from the January-July average experiment of Bryan

and Lewis (1979) and from the decreased horizontal heat diffusion

experiment of Meehl et al. (1982) (Figure 3.38).

For the Indian-Pacific ocean basin (Figure 3.39), we again

notice that the total heat transport is poleward in each hemisphere.

This pattern also appears to be well supported by the results of other

studies employing indirect and numerical methods (Table 3), although

there is quite a bit of variation in the total heat transport

magnitudes. In this table, the reader is advised that the study of

Bryan (1982) uses the world ocean model of Bryan and Lewis (1979) to

compute basin heat transports. In Figure 3.39, the individual

components of the total heat transport north of 300S appear to

contribute to the total heat transport with about the same latitudinal
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weighting as in the global ocean case. Within the Indian-Pacific

ocean basin, Talley (1984) has estimated a heat transport into the

Indian Ocean of 10 x 1014 W to 60 x 1014 W associated with the volume

transport estimate of Godfrey and Golding (1981) for flow through the

Indonesian Archipelago.

For the Atlantic ocean basin (Figure 3.40), the glaring result

of the world ocean model integration is the anomalous northward total

heat transport in the Southern Hemisphere. As can be seen in Table 4,

however, this anomaly is well supported by the results of many other

studies employing indirect, direct, and numerical methods. In this

table, the results of Bryan (1982) are again computed using the world

ocean model of Bryan and Lewis (1979). The reason for the anomalous

northward heat transport observed and calculated in the Southern

Hemisphere is unknown. Gordon (1985) calculated a net northwestward

geostrophic transport (relative to 1500 dbar) of 14 Sv from the

Indian Ocean into the South Atlantic Ocean that he associates with

partial steering of the Agulhas Current by anticyclonic eddies spawned

at the Agulhas Retroflection. He further computes a resultant

northward heat transport in the South Atlantic of 0.23 x 1014 W to 4.7

x 1014 W, depending on whether the Atlantic return water is

relatively warm South Atlantic thermocline water or relatively cold

North Atlantic Deep Water (or some mixture thereof). Gordon (1985)

goes on to state that an interocean exchange around the southern tip

of South America is unlikely to contribute significantly to a

northward heat transport in the South Atlantic, because the eastward

flow through the Drake Passage is nearly as cold as North Atlantic
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Deep Water (NADW) and would thus require a very large production rate

of NADW. Olson and Evans (1985), on the other hand, believe that the

anticyclonic Agulhas Retroflection eddies themselves may contribute

significantly to the northward heat transport of the South Atlantic,

as the encircled warm waters of the Indian Ocean thermocline propagate

to the northwest with their captor eddies. Finally, Bryan (1986) has

demonstrated in a process study that, with symmetric forcing and a

symmetric basin, a positive surface layer salinity anomaly introduced

in the Northern Hemisphere polar region will induce cross-equatorial

thermohaline circulations that will cause an equatorward transport of

heat over much of the Southern Hemisphere. Based upon Bryan's

result, no interocean exchange of heat is required to explain an

anomalous northward heat transport in the Southern Hemisphere.

World ocean model results for the meridional volume transport

of water are presented in Figures 3.41, 3.43, and 3.44 for the global,

Indian-Pacific, and Atlantic ocean basins, respectively. In Figure

3.41, we first note that meridional gyres are set up in the upper 200-

300 m of the global water column by near-surface Ekman transports. In

the vicinity of the ACC, however, the wind-driven cell is modeled to

penetrate down to the base of the thermocline. The larger equatorward

transport near the surface in this Southern Hemisphere gyre results at

least in part from stronger westerly winds and from a greater ratio of

ocean to land than in the Northern Hemisphere (Bryan and Lewis, 1979).

Another meridional gyre set up in mid-depths supports a cross-

equatorward circulation that brings cold NADW southward from the far

north and warmer thermocline waters northward from the Southern
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Hemisphere tropics. Examination of Figures 3.43 and 3.44 confirms

that this meridional circulation is mainly driven by water mass

movements in the Atlantic vice Indian-Pacific ocean basin. A final

meridional gyre appears near the bottom in the Southern Hemisphere of

the global ocean basin. Though generally associated with the

northward flow of Antarctic Bottom Water in the Atlantic ocean basin.

examination of Figures 3.43 and 3.44 suggests instead the northward

flow of Common Water in the Indian-Pacific ocean basin. In the

Atlantic, Antarctic Bottom Water (AABW) formed in the Weddell Sea is

generally believed to flow northward in the western deep basin formed

by the Mid-Atlantic Ridge and the continental slope of South America.

The eastern deep basin formed by the Mid-Atlantic Ridge and the

continental slope of Africa provides a channel for a compensating

southward flow of NADW a-id modified AABW. Zonal cross-sections of

modeled potential temperature and salinity at 160 S in the Atlantic

Ocean support this view by showing excellent agreement with similar

observed sections (as expected in the deep ocean, where a one year

robust-diagnostic time constant easily overdrives much slower physical

processes) (Figures 3.45 and 3.46). As a consequence, a zonal

summation of volume transport across the South Atlantic reveals only a

very weak near-bottom meridional gyre, as the southward flow in the

eastern deep basin effectively cancels out most of the northward flow

in the western deep basin. Moreover, a streamline plot of the Gulf

Stream region at 5000 m depth (Figure 3.47) supports the flow of AABW

north of the equator, and this feature is certainly not reflected in

the near-bottom gyre of the global ocean basin. Thus, the near-bottom
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gyre of the global ocean basin is linked with meridional circulations

in the Indian-Pacific ocean basin. Common Water represents a mixture

of transformed AABW and NADW as they are advected into the Indian and

Pacific Oceans by the ACC, as well as less dense AABW formed in the

Ross Sea and perhaps also along the Amery Ice Shelf (Pickard and

Emery, 1982). This very large water mass spreads northward along the

bottom in the Indian and Pacific ocean basins, thus driving a very

large meridional cell confined to the Southern Hemisphere.

For the purpose of comparison, world ocean meridional

circulation results from other studies are provided in Figure 3.42.

Figure 3.42(a) is a schematic view of the observed meridional

circulation according to Gordon (1971). His values represent yearly

averages calculated from salt budget considerations and from estimates

of the transport of NADW. Perhaps the best comparison to make with

Gordon's results concerns the cross-equatorial transport of NADW.

where Gordon's value of 15 Sv compares well with the world ocean

model's value of up to 12.5 Sv. Figure 3.42(b) is a contour plot of

the global meridional circulation according to the numerical model

results of Cox (1975). This figure resulted from 2.3 years of

integration of a prognostic model initialized with observed data and

using two degrees horizontal resolution and annual mean forcing. A

steady-state condition was not reached. We see from this figure that

Cox also computes a cross-equatorial transport of NADW of more than 10

Sv. His model also produces a near-bottom gyre in the Southern

Hemisphere -- in agreement with the world ocean model's simulation.

With respect to the near-surface wind-driven cells, Cox's model

33



produces results that are very similar to those of the world ocean

model, including a Southern Hemisphere midlatitude gyre that extends

to the base of the thermocline. Figure 3.42(c) is a contour plot of .

the global meridional circulation according to the numerical model

results of Bryan and Lewis (1979). This figure is an average of the

seasonal results from January and July, and is derived from 50 years

of integration using a robust-diagnostic strategy. Horizontal

resolution is 2.40 in latitude and 2.80 in longitude. While the near-

surface wind-driven cells of Bryan and Lewis match up well with those

of the world ocean model, the cross-equatorial gyre circulation does

not. The world ocean model depicts the southward flow of NADW being

balanced by a northward flow of thermocline waters from the Southern

Hemisphere tropics, whereas the model of Bryan and Lewis suggests that

AABW crossing the equator will provide the balancing flow. Perhaps

Bryan and Lewis are revealing a seasonal effect not distinguishable

when using annual mean forcing. The increased latitudinal domain of

Bryan and Lewis also allows polar meridional cells to develop which

accommodate the formation of NADW and AABW.

2. IsoDvcnal Mixing Integration

According to Semtner (1984), eddy diffusion in the real ocean

may act more along isopycnal surfaces than purely in the horizontal.

In ocean areas of significant baroclinicity, the effect of horizontal

Laplacian diffusion is to flatten out isopycnals and thus to reduce

the baroclinicity. By contrast, isopycnal diffusion will preserve the

baroclinicities. Thus we might expect that a switch from Laplacian to

isopycnal mixing would result in enhanced boundary currents--
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particularly in coarse-grid calculations. This trend was in fact

observed in the one degree, twenty level world ocean model. The Gulf

Stream increased in strength from 74 cm s-1 to 86 cm s-1 and from 67

Sv to 76 Sv off Cape Hatteras. The Kuroshio Current increased in

strength from 87 cm s-l to 133 cm s "I and from 91 Sv to 101 Sv south

of Japan. The Agulhas Current increased dramatically in strength from

84 Sv to 125 Sv and from a maximum v velocity of 66 cm s-I to over 95

cm s "I  Westward flow around the southern tip of Africa has also

increased in magnitude as a consequence. The Somali Current

increased only slightly in speed as a result of isopycnal mixing. The

EAC increased in speed from 40 cm s-1 to 56 cm s "I along the

Australian coast, resulting in a more southward penetration of the EAC

(46*S versus 40°S) before completing its anticyclonic turn to the

northeast. Greater current speeds were also apparent along the Tasman

Front and to the northeast of New Zealand. West of Australia, the

effect of isopycnal versus Laplacian mixing is dramatically

illustrated by comparing zonal sections of potential temperature and v

velocity at 30*S (Figures 3.48 and 3.49). In the isopycnal mixing

case, the isotherms are observed to bend much more sharply downward at

the coast, supporting a southward flow at the surface of 7 cm s-I

(versus 2 cm s "I in the Laplacian mixing case).

Meridional heat transport and meridional volume transport

results for the world ocean model using isopycnal mixing were very

close to those of the baseline (Laplacian mixing) integration. The

only noteworthy difference is that there appears to be a trend toward

even greater northward heat transports in the South Atlantic Ocean.
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It is interesting to note that this trend occurs simultaneously with a

trend toward increased westward flow around the southern tip of

Africa. Heat transport results for the isopycnal mixing integration

are summarized in Tables 2, 3, and 4, for the global, Indian-Pacific,

and Atlantic ocean basins, respectively. Plots of meridional heat

transport and meridional volume transport for all basins are contained

in the Appendix.

B. ONE-HALF DEGREE, TWENTY LEVEL EXPERIMENTS

1. Baseline (Three Year Interior Restoring) Integration

There were several noteworthy changes in the world ocean model

integration results stemming from increased horizontal resolution and

reduced climatological damping in the ocean interior. First, an

examination of Figure 3.50 reveals a more clearly defined Gulf Stream

north wall when compared to the one degree baseline integration. Also

evident is the emergence of a frontal zone extending southeastward

from Newfoundland over the Grand Banks. However, reduced

climatological damping in the ocean interior permitted the flow field

of the Gulf Stream to degrade even further -- once again suggesting

that mass exchange with the Arctic Ocean may be needed for a proper

simulation. The maximum volume transport off Cape Hatteras is now

only 53 Sv (versus 67 Sv) (Figure 3.51). Note also from this figure

that the computational noise in the southwestern Sargasso Sea that was

present in the one degree baseline integration has been eliminated in

the one-half degree integration.

In the Kuroshio Current region. the reduced eddy viscosity

and increased interior restoring time constant resulted in a stronger
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Kuroshio Current and a stronger Kuroshio Extension. In particular,

the maximum speed of the Kuroshio Current south of Japan increased

from 87 cm s-1 to in excess of 114 cm s-I  Greater volume transports

were also computed further to the east than in the one degree baseline

integration (Figure 3.52). Notice also in Figure 3.52 the emergence

of subtropical flow instabilities that were not present in the one

degree baseline integration. The ACC in the vicinity of the Drake

Passage maintained about the same net volume transport, although

current speeds were somewhat increased in localized areas. Much of

the computational noise present in the vicinity of the Drake Passage

for the one degree baseline integration has also been eliminated

(Figure 3.53). One dramatic result of increased resolution, however,

was the strengthening and increased definition of a near-surface front

where the Falkland and Brazil Currents meet (Figure 3.54). In the EAC

region, somewhat greater current speeds were computed along the

Australian coast (64 versus 40 cm s-l), but the volume transport of

the EAC was about the same. Current speeds were also slightly

increased along the Tasman Front. In this experiment the EAC is

depicted as extending southward only to 36aS (versus 40S), and

computational noise is no longer evident (Figure 3.55). Subtropical

instabilities have also emerged in the potential temperature field

(Figure 3.56).

The near-surface potential temperature field in the region of

the Agulhas Current is interesting in a couple of respects: the

frontal region between the Agulhas Return Current and the ACC has

sharpened considerably, and the South Equatorial Current in the Indian
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Ocean is now simulated as meandering considerably as it approaches the

African coast (Figure 3.57). This latter result is Llso evident in

the volume transport field (Figure 3.58). Other results in this

region include a stronger Agulhas Current (94 Sv versus 84 Sv) and a

Somali Current that has increased in speed from 121 cm s-I to in

excess of 155 cm s-I

West of Australia, we first note that the computational noise

that appeared in the northeast corner of the volume stream function

plot for the one degree baseline integration has been eliminated by

the shift to one-half degree horizontal resolution (Figure 3.59). The

transport between Indonesia and Australia has remained at about 20 Sv

-- consistent with the estimates of Godfrey and Golding (1981).

Along the west coast of Australia, southward flow at the surface has

increased slightly from 2 cm s-l to 3 cm s "-. In the equatorial

Pacific region, the only significant change over the one degree

baseline integration is a stronger EUC, reaching a maximum eastward

speed of 114 cm s-1 (versus 94 cm s-1) at abouc 138*W (versus 1430W)

longitude and 115 m depth. Again, stronger currents in this

integration can generally be attributed to decreased eddy viscosity.

The meridional heat transport results of the one degree

baseline integration were fine-tuned in the one-half degree baseline

integration. These results are summarized in Tables 2, 3, and 4 for

the global, Indian-Pacific, and Atlantic ocean basins, respectively.

The actual curves from which these values were derived are contained

in the Appendix. For the global ocean, we note less of a northward

total heat transport north of 20°S. and less of a southward total heat
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transport south of 200S. Several effects accomplish these trends.

First, we note in all ocean basins a flattened curve for the diffusive

heat transport. This effect can be attributed to decreased eddy

diffusivity. Second, the overturning component in the tropics has

shifted southward (i.e., toward a more southward or less northward

heat transport) for the global and Indian-Pacific ocean basins. This

effect probably results from a more prognostic evolution of the waters

above the main thermocline. Lastly, we can detect a reduced gyre

component in the Northern Hemisphere midlatitudes of the Atlantic

Ocean that also reflects in the global ocean results. This effect is

erroneous in that a longer interior restoring time constant permitted

the Gulf Stream to degrade further from climatology than in the one

degree baseline integration. The only noteworthy change in the

meridional volume transport contour plots was reduced cross-equatorial

volume transport in the Atlantic Ocean. This effect results from the

combination of no mass exchange with the Arctic Ocean and a less

robust damping of the ocean interior. Volume transport contour plots

for each of the ocean basins are contained in the Appendix.

2. Free Thermocline Inteeration

Sarmiento and Bryan (1982) found that the most realistic

results from their robust-diagnostic model occurred when

climatological damping was reduced to zero in the top 870 in of the

water column. Following their "free thermocline" approach in the top

710 in of the water column, the world ocean model produced results that

were generally very similar to those obtained using a three year

restoring constant in the ocean interior. All current svstems
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examined in this study maintained nearly constant speeds and

transports. The north wall of the Gulf Stream is somewhat weakened

and the frontal region off Newfoundland is considerably altered -- but

these results may stem from the lack of mass exchange with the Arctic

Ocean, and therefore may be erroneous (Figure 3.60). One noteworthy

result of the free thermocline experiment was the general warming of

the upper several hundred meters of the water column. This trend can

be observed by close examination (at 30ON latitude. 'for example) of a

meridional cross-section of potential temperature along the

international dateline (Figure 3.61). The free thermocline

integration also brought increased definition to a cool and fresh

countercurrent/undercurrent flowing northward beneath and offshore

from the Leeuwin Current (Figures 3.62, 3.63, and 3.64). Lastly, the

free thermocline experiment brought increased amplitude to subtropical

instabilities that initially emerged in the one-half degree baseline

integration (Figures 3.65 and 3.66). The meanders of the South

Equatorial Current as it approaches the African coast in the Indian

Ocean are now associated with greater zonal velocities than in the

one-half degree baseline integration (Figure 3.67). Meridional heat

transport and volume transport plots for the free thermocline

experiment are contained in the Appendix. Meridional heat transport

results for this integration are also summarized in Tables 2, 3, and 4

for the global, Indian-Pacific, and Atlantic ocean basins,

respectively. Heat transport results were very consistent with those

of the one-half degree baseline integration. Northward heat transport

in the northern tropics and southward heat transport in the southern
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tropics of the global ocean basin were somewhat reduced, owing largely

to a reduced magnitude of the overturning component in the Indian-

Pacific ocean basin. This trend is consistent with that observed when

the damping time constant in the ocean interior was increased from one

year to three years. Similarly, the erroneous trend toward reduced

cross-equatorial transport in the Atlantic Ocean was continued in the

free thermocline integration.
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Figure 3.19 (aj Meridional and (b) zonal velocity in cm

s at 12.5 m depth in the East Australian
Current region for experiment 1.
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CASEA 1001 ITEPATJON 10001
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POTENTIAL TEMPERATURE LEVEL 37.50M
0 IOE 20E 30E 40E 50E 60OE 70E

19 Lcz
20S5- - -0

bOS- 40S

0 10E 20E 3OE 40E 50E 60E 70E

A- ROBUST DIAGNOSTIC RUN
CONTOUR INTERVAL = 1.00 FIELD MIN - -0.975 19.SKE.59.50Sl

SCALE FACTOR z 1.80 FIELD MAX = 28.2 169.50E.O.56N1

Figure 3.22 Potential temperature in *C at 37.5 im depth in
the Aguihas Current region for experiment I.
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PARALLEL OCEAN CLIMATE MODEL (P0CM) ONE DEGREE WORLD OCEAN CONFIGURATION NO. 2
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Figure 3.23 Zonal velocitv in cm s1at 12.5 in depth in
the Aguihas Current region for experimnent 1.
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Figure 3.24 Meridional velocity in cm A- at 12.5 depth in
the Aguihas Current region for experiment 1
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CASEA 1001 ITERATION 10001
PARALLEL OCEAN CLIMATE MODEL (P0CM) ONE DEGREE WORLD OCEAN CONFIGURATION NO. 2

VOLUME STREAM FUNCTION LEVEL O.OOM
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Figure 3.25 Horizontal volv!ne transport in Sv(-lO'2 cmT3

S-1) in the Aguihas Current region for
experiment 1.
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Figure 3.27 Horizontal volume transport in Sv(-lO
1 2 cm3

s "I ) in the western Australia region for
experiment 1.
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Figure 3.37 Global meridional heat transport for
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negative values southward).
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Figure 3.45 Zonal cross-section near 160S latitude in the
Atlantic Ocean of (a) potential temperature in
*G for experiment 1 and (b) observed

temperature in *C (from Pickard and Emery.I
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Figure 3.50 Potential temperature in LC at 37.5 m depth in

the Gulf Stream region (a) for experiment I

and (b) for experiment 3.

404



CASt:A 1001 ITEIATION 10001
Pa4DMr oIFS OeF4Dr u*AAF ft (POCUS OWE RFFT *OM , OCIAN COWATP41O 00O 2

VOLUME STREAM FUNCTION LEVEL O.O004

10011 VOW sow 70W GOV soff

sow - o"

'Cm0 0 0

7091 20"

1001F 901F 911 70W 610 sow

A- ROVSST DIAGNOS TICRu

SCME IG 9.c9m S 1 FIELD NOW S 0,67K.4174 iW.J . Wit

CASEA 2001 ITERATION 50001
P"-IF v4 ri fwmro1r urwwFi (POcuS ~ rM oPw SWCUF mOF ct" COIwqrA^TIO No. 7

VOLUME STREAM FUNCTION LEVEL 0.0OOA
1001P gow sow 70W 6R1, SOW

109 9w700 61 sow

A- 1/2 0(G ROSST IAGOSMU NUN, 3 YO REST
H061" 1POIPPOP. - 0.11K-14 FI 1 01 N .21E.S5SRS.2 *9 ?"1I
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IV. SUMMARY AND CONCLUSIONS

An ocean modeling system now exists that can handle large ocean

problems on anticipated supercomputers of the 1990's. Using one

degree horizontal resolution; 20 levels of vertical resolution:

realistic geometry, forcing, and physics; and a robust-diagnostic

strategy the world ocean model of Semtner and Chervin produced

results after four years of integration that showed many realistic

features of the global ocean circulation. Moreover, meridional heat

and voiume transports resulting from this model compared well with

those of other studies. Some improvement in the modeling of boundary

currents using one degree horizontal resolution was realized by a

switch to diffusion along isopycnal (versus horizontal) surfaces.

Using one-half degree horizontal resolution and a less robust

climatological damping of the ocean interior, ten years of integration

of the world ocean model of Semtner and Chervin produced an even more

realistic representation of global ocean circulation. Frontal regions

and subtropical instabilities that were not (or were only barely)

evident in the one degree experiments became much stronger and much

more clearly defined. Meridional heat transport results appeared to

benefit from a reduced horizontal eddy diffusivity and from less

climatological damping of the ocean interior. Experimentation with a

"free thermocline" (after Sarmiento and Bryan, 1982) produced only

minor changes in the results obtained using a three year damping time

constant -- suggesting that the physics of the world ocean model are
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largely unrestrained in the upper water column by the robust-

diagnostic terms. The additional ten years of model integration

afforded by this experiment also demonstrated the intensification of

subtropical instabilities already identified in the earlier half-

degree experiment. These realistic high-resolution integrations have

been made possible by employing an ocean model code that is both fully

vectorized and designed for "multitasking" on as many processors as

the latest supercomputer technology can afford.

There are many potential applications of this ocean modeling

system. Already demonstrated using the world ocean model are an

anomalous northward heat transport in the South Atlantic, a possibly

related westward flow around the southern tip of Africa, a westward

flowing Gulf Stream undercurrent, an anticyclonic turn of the East

Australian Current near the southern tip of Australia, and the

suppression of upwelling by a southward flowing current along the

western coast of Australia. An ongoing half-degree simulation

employing biharmonic mixing is revealing meanders and pinched-off

rings in the major western boundary currents. A future simulation

using one-third degree horizontal resolution will be fully eddy-

resolving. Without this additional resolution, however, the realistic

meridional heat and volume transports produced by the world ocean

model already nominate it for coupling to global atmospheric models in

climate studies. Moreover, the ocean model system used in this world

ocean analysis can also be used for high-resolution regional studies.

Such a simulation employing an open boundary condition between the
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world ocean and the tropical ocean has already been successfully

tested.

The future of this ocean modeling system is bright. With the

supercomputers likely to be available in the early 1990's, fully

prognostic modeling with one-sixth degree horizontal resolution and 40

levels of vertical resolution should be achievable. From a Navy

standpoint, three things must be accomplished before this ocean

modeling system can be employed for deterministic forecasting of

ocean currents, fronts, meanders, and eddies on a real-time basis.

First, the model's simulation of the Gulf Stream must be improved.

Experimentation conducted in this study suggest that mass exchange

between the North Atlantic and Arctic Oceans may be important when

modeling the Gulf Stream. Plans have already been made to map the

Arctic Ocean grid into the unused data arrays of the primary continent

and then to couple the Arctic grid to the North Atlantic at 650N

latitude. Second, the Navy must provide state-of-the-art

supercomputers with multiple processors and fast vector startup times.

Acquisition of such a supercomputer is already being considered for

the Naval Oceanographic Office in Bay St. Louis, MIssissippi and for

the Fleet Numerical Oceanography Center in Monterey, California.

Third, a data assimilation system is needed that can provide accurate

real-time forcing of the ocean model for the region of interest. Such

a data assimilation system is certainly within reach given the

technology of 1988. It is the author's opinion that submarine and

anti-submarine warfare of the 1990's will require forecasting of the
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world ocean circulation as only this ocean modeling system can

provide.
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APPENDIX: MERIDIONAL HEAT AND VOLUME TRANSPORT PLOTS

Enclosed are plots of meridional heat transport and meridional

volume transport for the global, Indian-Pacific, and Atlantic ocean

basins for each of the four experiments analyzed in this study.
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Figure A.1 Clobal meridional heat transport for
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Figure A.2 Same as Figure A.1 but for Indian-Pacific
ocean basin.
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Figure A.7 Global meridional heat transport for
experiment 2 (positive values northward;
negative values southward).
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Figure A.8 Same as Figure A.7 but for Indian-Pacific
ocean basin.
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Figure A.9 Same as Figure A.7 but for Atlantic ocean
basin.
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Figure A.10 Global meridional volume transport in units of
lo11 cm3 s-1 for experiment 2 (positive values
clockwise; negative values counterclockwise).
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Figure A.1.1 Same as Figure A-10 but for Indian-Pacific
ocean basin.
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Figure A.12 Same as Figure A.10 but for Atlantic ocean
basin.
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Figure A.13 Global meridional heat transport for
experiment 3 (positive values northward;
negative values southward).
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Figure A.14 Same as Figure A.13 but for Indian-Pacific
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Figure A.15 Same as Figure A.13 but for Atlantic ocean
basin.
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Figure A.16 Global meridional volume transport in units of
1011 cm3 s-1 for experiment 3 (positive values
clockwise; negative values counterclockwise).
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Figure A.17 Same as Figure A.16 but for Indian-Pacific
ocean basin.
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Figure A.18 Same as Figure A.16 but for Atlantic ocean]
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Figure A.19 Global meridional heat transport for
experiment 4 (positive values northward;
negative values southward).
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Figure A.20 Same as Figure A.19 but for Indian-Pacific
ocean basin.

136

I . . .. ,. , .'* ,* z *p' ,' . a a ,a P ' i'



p

3 .0 - I I I

2.5

2.0

1.5

L 1.0

IS!

X _.5-
D, 0--- --

-1.5

CURVE A - Overturning
-20 CURVE B - Gyret

CURVE C - Diffusive
-25 CURVE D - Total

-30 I Ii I I
-60 -40 -20 0 20 40 60

LATITUDE (DEGREES)

M

Figure A.21 Same as Figure A.19 but for Atlantic ocean
basin.
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Figure A..23 Same as Fi.gure A.22 but for Indian--Pacific
ocean basin.
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